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Abstract

The mutualism between chemical cues emitted into the air and variations in how pri-

mates respond to them using olfaction has demonstrated aspects of species-specific

adaptations. Building on this mutualism we can look at particle deposition as another

means to understanding how various environments may have elicited biological

changes that enable efficient communication. Research on particle movement and

deposition within the nasal cavity is largely based on questions about health as it

relates to drug delivery systems and overall olfactory function in modern humans. With

increased access to 3D models and the use of computational fluid dynamic analysis,

researchers have been able to simulate site-specific deposition, to determine what par-

ticles are making it through the nasal cavity to the main olfactory epithelium, which

ultimately leads to processing in the olfactory bulb. Here we discuss particle deposition

research, sensory drive and their potential applications to evolutionary anthropology.
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1 | INTRODUCTION

Evolutionary anthropologists have a long-standing interest in nasal

morphology, looking to define and contextualize the morphological

variation seen across modern humans and throughout the hominin fos-

sil record (Box ).10,11 At present the prevailing hypothesis used to

explain the evolution of the human nose, which Jacobs12 refers to as

the “conditioning hypothesis,” suggests that the external nose evolved

to support the need to warm and humidify air prior to reaching the

lungs. Additionally, the nasal cavity plays an essential role in this pro-

cess as the site where the exchange between heat and moisture takes

place.13 The majority of research supporting the link between nasal

morphology and climate focuses on the nasal vestibules, or the

triangular-shaped entry points of the nose and the shape of the septum

and cartilage that form the distinctive pyramid shape seen in our noses.

However, Noback et al.14 found a similar relationship looking at the

bony structure of the nasal cavity and the nasopharynx, where the bony

cavity variation was associated with temperature and the nasopharynx

variation was associated with humidity, other studies have also noted a

relationship between latitude and nasal morphology.13 Despite the

focus on the nasal cavity as a tool for conditioning air, its function

and/or selection for olfaction has become an increasingly prominent

point of discussion.12,15 This line of research and discourse has the

potential to redefine the selection pressures we currently associate

with nasal morphology as a standalone explanation. It is possible that

there is a level of mutuality, where nasal morphology maximizes the

ability to humidify air for the purpose of breathing as well as olfaction

given that humidity is associated with volatile emissions.16 It is likely

that there is a collection of selective pressures that produced the

morphological variation we see today. In an effort to have a more com-

prehensive understanding of these evolutionary pressures, defining the

extent to which the sense of smell is facilitated across the Primates

order can inform our understanding of primate olfaction as it functions

today and how it evolved over the last 60million years.17

To determine the relationship between nasal morphology and the

role it plays in variations in olfactory ability, we can build on research

describing the mutualism seen between the volatile organic com-

pounds (VOCs) emitted into the air and variations in how non-human

primates (hereafter primates) respond to such cues.18 The results of

this research have illuminated aspects of species-specific olfactory

adaptations. Additionally, we can simulate the transportation of VOCs

through the nasal cavity based on airflow dynamics as well as how

those VOCs are deposited onto the mucosal lining of the nasal cavity,

known as particle deposition. To accurately simulate particle
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deposition and general VOC movement within the nasal cavity, it is

important to know what sized VOCs are present within the environ-

ment, and therefore what sized particles we should use while

reconstructing particle airflow and deposition.

Broadly speaking, the sense of smell is the result of inhaled particles

that dissolve into the mucus lining covering the olfactory epithelium.19

After deposition and absorption, the peripheral olfactory sensory neu-

rons recognize these chemical compounds in the olfactory epithelium,

where olfactory receptors facilitate signal transduction in the olfactory

bulb20 (Figure 1). This multi-step process, from an evolutionary perspec-

tive, creates the opportunity for variation and optimization across vari-

ous species in different environments and during different seasons.

From a morphological perspective, variability in the nasal cavity

can promote either increased or decreased particle deposition effi-

ciency relative to particle size. To address this relationship and the

question of how variable nasal morphology may influence deposition

there needs to be an effort to characterize the chemical environment.

Identifying the VOC's present in an environment is already a common

practice,6 but also we need to determine the size of those VOC's

which are the most prominent signals and characterize the variation in

nasal morphology of key species across different environments. Ulti-

mately, evolutionary anthropologists can benefit from research simu-

lating particle movement and deposition as the dynamic relationship

between particle deposition and olfaction can act as another mecha-

nism by which we can identify adaptations.

2 | THE CHEMICAL WORLD

The chemical environments that humans and primates inhabit are

comprised of a wide array of chemical compounds that vary in size.21

Researchers studying how the chemical environment informs primates

have provided increasing evidence that the chemical compounds

emitted by fruits and other vegetation are important cues that pri-

mates can understand and use to make decisions.22–25 For example,

fruits that are more regularly eaten by lemurs, a prominent seed dis-

perser in Madagascar, emit a substantially larger amount of VOCs

when ripe compared to fruits that are not regularly eaten by lemurs.

F IGURE 1 (a) Sideviewof the human
nasal anatomy, including a representation of
environmental particles inhaled into to nasal
cavitywhere some are deposited into the
mucus lining, especially the olfactory
epithelium,which is one of the necessary
steps in our sense of smell. Herewe include
key anatomical features discussedwithin the
text. (b) Red overlay represents the
approximate regionwhere themain
olfactory epithelium (MOE) covers nasal
turbinates 1–4 inMicrocebus sp. yellow
arrowhead pointing to the olfactory recess.
Figuremodified fromGarrett and
Steiper, 2014 [Color figure can be viewed at
wileyonlinelibrary.com]

BOX 1 Glossary

Nasopharynx: The nasopharynx connects the nasal cavity and oropharynx.1

Olfactory epithelium: Olfactory epithelium is a mucosal layer of tissue, with supporting cells and sensory neurons that line the eth-

moturbinals of the internal nasal fossa.2

Olfactory receptor neurons: Within the olfactory epithelium these neurons project into the nasal fossa and facilitate transduction of

odorant information.3

Olfactory bulb: This region of the brain is the first processing station in the central olfactory pathway.4

Environmental odorants: Airborne chemical compounds within the environment.5

Computational fluid dynamics: an integrated approach to studying fluids in motion, bringing together fluid mechanics, mathematics, and

computer science.6

Nasal valve region: The anterior portion of the nasal cavity, from the nostril to the nasal valve (NV), is the place of highest nasal resis-

tance to airflow.7

Olfactory recess: a space at the back of the nasal airway that facilitates prolonged air circulation that is not present in haplorrhine pri-

mates but is present in most non-primate mammals and strepsirrhines.8

Macrosmatic: species with a greater level of olfactory function.9
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There is not a comparable increase in VOCs in fruits eaten by animals

that are less reliant on olfaction,24 suggesting that these fruits are sig-

naling the lemurs. Animal scat from species with varying diet types

also show distinct chemical profiles, this is a byproduct of the varying

chemical composition of the foods they are eating.26 This distinct pro-

file can also act as an olfactory cue for others animals within the envi-

ronment who are likely able to use these distinct profiles to find or

avoid certain animals. In addition to the presence of a variety of chem-

ical compounds, perception of those cues adds another layer to how

information is communicated. In humans, larger more complex com-

pounds are more “appealing” compared to smaller less complex

compounds,27 further highlighting the nuanced relationship between

chemical compounds and the intended receiver.

Chemical cues are functional across a relatively longer distance

compared to the reach of our sense of touch and vision.28 This range

is an intermediate position among other senses, where auditory cues

are the most far-reaching. Chemical cues can indicate the presence of

resources, conspecifics, and predators. Chemotaxis, the movement

toward (or away from) a source of chemical cues is an essential com-

ponent of the successful behavioral ecology of most animals.29 These

signals also outlast many other sensory cues in terms of latency.28

Through an ongoing discourse among anthropologists, psycholo-

gists, and biologists, it is accepted that humans and other primates

have a better sense of smell than previously understood.30–31 As we

do away with the concept that humans and our closest cousins have

traded olfaction for vision, we should consider that olfaction may have

played a more substantial role in shaping our evolution.

3 | SENSORY DRIVE

Variation in the environment can drive divergence by means of percep-

tual tuning.32 Environmental cues may favor individuals with a sensitiv-

ity to different chemical compounds, and natural selection will have

acted on these sensitivities to facilitate signal matching, but this is dic-

tated by the local chemical environment.33 When the chemical environ-

ments differ, the selection pressure for a particular signal will also differ,

which over time could lead to divergence in morphological traits, such

as nasal cavity shape ultimately affecting species-level olfactory ability.

The sensory drive hypothesis34 suggests that evolution influences

signal production and signal detection in a dynamic world, predicting

that selection favors mechanisms that facilitate communication

depending on the environment.34 Through this hypothesis, Endler35

describes how the transmission of signals, habitat-specific perceptual

tuning and signal matching can influence the evolution of the signal

characteristics themselves. Chemical cues and the intended recipient

must work together to prompt the desired response, so in order to

consider a signal to be adaptive the receiver must select for the cue of

the emitter to facilitate communication. The influence of sensory

drive on olfaction is essential to understanding how chemical commu-

nication evolved and how it may be affected by changing environmen-

tal conditions. Despite its importance as a sensory modality, olfaction

receives little attention in the sensory drive literature.36 As a result,

there are few clear examples of sensory drive in olfaction.

Researchers have reviewed this topic noting how the environment

will definitely influence signal transmission,37 there are a few aquatic

studies in artificial streams, but there is a consistent call for more work

focused on the relationship between olfactory signals and sensory

drive. Studying the relationship between the size of VOC's released

into the environment, what we already know about olfactory cues

informing primate decisions, and nasal cavity variation is a great

opportunity to test aspects of the sensory drive hypothesis.

4 | PARTICLE DEPOSITION

Considering what we know about particle deposition in humans and

other animal models, there is the potential to uncover further one of

the mechanisms that may contribute to the variation in olfactory abil-

ity seen across primate species. Though historically this research has

focused on applications to medicine, health, and in testing the condi-

tioning hypothesis, we see the potential for this research to help evo-

lutionary anthropologists and biologists better understand

morphological variation, evolutionary selection pressures, sensory

drive, and olfactory decision-making.

There is a collection of experimental studies measuring particle

deposition in the human nasal passage, using in vivo methods,38,39

nasal casts,40 and 3D reconstructions.41 The bulk of this research

sought to improve nasal delivery systems for medications42 and

understand our susceptibility to pollutants (e.g., metal nanoparticles

reaching the brain through the nasal epithelium by way of the olfac-

tory bulb),43 this continues to be the primary focus of work in nasal

particle deposition today.44,45 As a result of these studies, researchers

have determined that deposition efficiency is mainly a function of par-

ticle size and density, airflow rate, and nasal cavity geometry.

Inhaled air is filled with particles, but not all of these particles will

be deposited on the main olfactory epithelium, and furthermore, even

fewer will reach the superiorly oriented olfactory epithelium where

particles are absorbed and eventually interpreted by the olfactory

bulb and downstream regions in the brain. Computational fluid

dynamics (CFD) and 3D nasal cavity reconstructions allow researchers

to look at site-specific particle deposition, improving our ability to

understand the relationship between particle deposition and the

diverse measures that broadly define olfactory ability, such as odor

sensitivity and discrimination.46 Kublik and Vidgren47 reinforced the

findings that particle size is one of the most crucial factors that deter-

mine where particles are deposited, typically defined through a mea-

sure known as particle deposition efficiency. The relationship

between particle size and nasal deposition efficiency at a set airflow

rate tends to follow a pattern where particles between 0.5 and 1.0 μm

have a lower deposition efficiency and particles below and above this

range show higher deposition efficiency.48

In even smaller particles, those ranging in size between 1.0 and

2.0 nm had the highest deposition efficiency.49 Also, Garcia and col-

leagues49 noted that compared to rats, humans have lower olfactory

deposition efficiency, which was explained by the fact that rats have a
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higher proportion of olfactory epithelium within their nasal cavity and

a narrower nasal passageway.49 The anatomical variations in the olfac-

tory region and the nasal valve region strongly affect airflow patterns

and odorant transport, which ultimately can affect olfactory ability.50

Considering site-specific particle deposition simulation and how it

relates to olfactory capacity, it is important to note a large proportion

of the olfactory epithelium lines the olfactory recess.51 In the olfac-

tory recess, which is present in many non-primate mammals and

strepsirrhines, inhaled air can be sequestered, allowing inhaled parti-

cles to recirculate improving their likelihood of deposition and absorp-

tion51 In addition, the olfactory recess also slows air movement,

allowing particles more time for deposition.52,53 Because of this,

chemical compounds inhaled by primates with an olfactory recess

have more time to deposit on the mucosal layer and bind to receptors.

In 2019, Simth54 was among the first to apply CFD and particle

deposition analysis to a primate nasal cavity. This study highlighted

the complicated nature of defining species using binary terms. The

pygmy slow loris as a strepsirrhine possess traits congruent with mac-

rosmatic anatomy, yet their airflow patterns do not segregate

between olfaction and respiration in a way that you would expect

from a species specialized for olfaction, such as dogs, who do partition

nasal airflow for breathing and olfaction.55 This look into how CFD

and particle deposition research is already informing questions about

primate evolution only emphasizes the possible applications of this

well-established field on evolutionary anthropology.

5 | CONCLUSION

Physicists and chemists use a host of high-precision instruments that

can measure particle size. We think these tools should also be

employed by anthropologists. By looking at the information we can

gain from particle deposition research through an evolutionary lens,

we can begin to address some of the questions about our evolution

that have previously evaded us. Variation in nasal morphology has

been clearly documented in the hominin fossil record, in modern

humans, and in other primates. Currently, we accept that climate

(e.g., temperature and humidity), and the need to condition inhaled air

before it reaches our lungs is a driver for nasal cavity variation, but

emerging theories about olfaction as a driver highlight the need to

have a closer look at species-specific mechanisms for communication

and other interactions with their environment. How are the VOCs

emitted by the environment used to convey information to primates?

Do these VOCs vary in size/dimension? And is there a relationship

between the VOCs emitted, their size, and the nasal cavity morphol-

ogy of the primates responding to them? Ultimately, we are asking

how we can use techniques from particle deposition and 3D computa-

tional fluid dynamics research to shed light on ongoing questions in

evolutionary anthropology. How particles are deposited within the

nasal cavity and the role our sense of smell may have played in driving

variation warrants the attention of anyone interested in how humans

evolved.
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